Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38077049

RESUMEN

The flavivirus NS3 helicase (NS3h), a highly conserved protein, plays a pivotal role in virus replication and thus represents a potential drug target for flavivirus pathogenesis. NS3h utilizes nucleotide triphosphate, such as ATP, for hydrolysis energy (ATPase) to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. The intermediate states along the ATP binding and hydrolysis cycle, as well as the conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. We use extensive molecular dynamics simulations of apo, ATP, ADP+Pi, and ADP bound to WNV NS3h+ssRNA to model the conformational ensembles along this cycle. Energetic and structural clustering analyses on these trajectories depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). These findings were experimentally corroborated using viral replicons encoding three mutations at the D471 position. Replication assays using these mutants demonstrated a substantial reduction in viral replication compared to the wild-type. Molecular simulations of the D471 mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.

2.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
3.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603748

RESUMEN

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , Gripe Humana , Inmunoglobulina G/inmunología , Anticuerpos Antivirales/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Formación de Anticuerpos , Gripe Humana/inmunología , Gripe Humana/virología , COVID-19/inmunología , COVID-19/virología , Cambio de Clase de Inmunoglobulina , SARS-CoV-2/fisiología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/fisiología
4.
Viruses ; 14(6)2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35746597

RESUMEN

Without sufficient herd immunity through either vaccination or natural infection, the coronavirus disease 2019 pandemic is unlikely to be controlled. Waning immunity with the currently approved vaccines suggests the need to evaluate vaccines causing the induction of long-term responses. Here, we report the immunogenicity and efficacy of our adjuvanted single-dose Rabies-vectored SARS-CoV-2 S1 vaccine, CORAVAX, in hamsters. CORAVAX induces high SARS-CoV-2 S1-specific and virus-neutralizing antibodies (VNAs) that prevent weight loss, viral loads, disease, lung inflammation, and the cytokine storm in hamsters. We also observed high Rabies VNA titers. In summary, CORAVAX is a promising dual-antigen vaccine candidate for clinical evaluation against SARS-CoV-2 and Rabies virus.


Asunto(s)
COVID-19 , Vacunas Antirrábicas , Virus de la Rabia , Rabia , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Cricetinae , Humanos , Rabia/prevención & control , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
5.
PLoS Pathog ; 18(1): e1010255, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073387

RESUMEN

Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Células Dendríticas/inmunología , Vacunas contra la Influenza/inmunología , Células de Langerhans/inmunología , Liposomas/inmunología , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología , Animales , COVID-19/inmunología , Ratones , Nanopartículas , Infecciones por Orthomyxoviridae/inmunología , SARS-CoV-2/inmunología
6.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34593624

RESUMEN

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome-CoV, and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors, including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR-tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35-0.74], P = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type-dependent manner. Targeting GSK-3 may therefore provide an approach to treat COVID-19 and future coronavirus outbreaks.


Asunto(s)
COVID-19/prevención & control , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Compuestos de Litio/uso terapéutico , Adulto , Anciano , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Células HEK293 , Humanos , Compuestos de Litio/farmacología , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Estudios Retrospectivos
7.
PLoS One ; 16(6): e0253089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34166398

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , COVID-19/inmunología , Núcleo Celular/inmunología , Factor 3 Regulador del Interferón/inmunología , Proteínas de Unión al ARN/inmunología , SARS-CoV-2/inmunología , Transducción de Señal/inmunología , Proteínas no Estructurales Virales/inmunología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , COVID-19/genética , Núcleo Celular/genética , Células HeLa , Humanos , Factor 3 Regulador del Interferón/genética , FN-kappa B/genética , FN-kappa B/inmunología , Fosforilación/genética , Fosforilación/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas de Unión al ARN/genética , SARS-CoV-2/genética , Transducción de Señal/genética , Proteínas no Estructurales Virales/genética
8.
Sci Immunol ; 6(59)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010142

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Bencimidazoles/farmacología , COVID-19/prevención & control , Interferones/inmunología , Proteínas de la Membrana/agonistas , Animales , Línea Celular , Chlorocebus aethiops , Activación Enzimática/efectos de los fármacos , Células Epiteliales/virología , Humanos , Evasión Inmune/inmunología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Células Vero , Replicación Viral/efectos de los fármacos
9.
Cell Rep ; 35(1): 108959, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811811

RESUMEN

There is an urgent need for antivirals to treat the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To identify new candidates, we screen a repurposing library of ∼3,000 drugs. Screening in Vero cells finds few antivirals, while screening in human Huh7.5 cells validates 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we find that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we find nine drugs are antiviral in respiratory cells, seven of which have been used in humans, and three are US Food and Drug Administration (FDA) approved, including cyclosporine. We find that the antiviral activity of cyclosporine is targeting Cyclophilin rather than calcineurin, revealing essential host targets that have the potential for rapid clinical implementation.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Ciclosporina/farmacología , Reposicionamiento de Medicamentos , Células Epiteliales/metabolismo , Pulmón/metabolismo , SARS-CoV-2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/patología , Chlorocebus aethiops , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Pulmón/patología , Pulmón/virología , Serina Endopeptidasas/metabolismo , Estados Unidos , United States Food and Drug Administration , Células Vero
10.
medRxiv ; 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-33655282

RESUMEN

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome (MERS-CoV), and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35 - 0.74], p = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type dependent manner. Targeting GSK-3 may therefore provide a new approach to treat COVID-19 and future coronavirus outbreaks. SIGNIFICANCE: COVID-19 is taking a major toll on personal health, healthcare systems, and the global economy. With three betacoronavirus epidemics in less than 20 years, there is an urgent need for therapies to combat new and existing coronavirus outbreaks. Our analysis of clinical data from over 300,000 patients in three major health systems demonstrates a 50% reduced risk of COVID-19 in patients taking lithium, a direct inhibitor of glycogen synthase kinase-3 (GSK-3). We further show that GSK-3 is essential for phosphorylation of the SARS-CoV-2 nucleocapsid protein and that GSK-3 inhibition blocks SARS-CoV-2 infection in human lung epithelial cells. These findings suggest an antiviral strategy for COVID-19 and new coronaviruses that may arise in the future.

11.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33631096

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Asunto(s)
Alphacoronavirus/inmunología , Anticuerpos Antivirales , Betacoronavirus/inmunología , COVID-19/inmunología , Adolescente , Adulto , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19 , Niño , Preescolar , Chlorocebus aethiops , Protección Cruzada , Reacciones Cruzadas , Susceptibilidad a Enfermedades , Células HEK293 , Humanos , Lactante , Recién Nacido , Células Vero
12.
medRxiv ; 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33200143

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the COVID-19 pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 204 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 252 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ~23% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but paradoxically these hCoV cross-reactive antibodies were boosted upon SARS-CoV-2 infection.

13.
NPJ Vaccines ; 5: 98, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088593

RESUMEN

The recently emerged coronavirus SARS-CoV-2, the causative agent of COVID-19, is rapidly spreading in the world. The exponentially expanding threat of SARS-CoV-2 to global health highlights the urgent need for a vaccine. Herein we show the rapid development of a novel, highly efficient, and safe COVID-19 vaccine using a rabies virus-based vector that has proven to be an efficient vaccine against several emerging infectious diseases. This study reports that both a live and an inactivated rabies virus containing the SARS-CoV-2 spike S1 protein induces potent virus-neutralizing antibodies at much higher levels than seen in the sera of convalescent patients. In summary, the results provided here warrant further development of this safe and established vaccine platform against COVID-19.

14.
Science ; 369(6508)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32669297

RESUMEN

Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.


Asunto(s)
Linfocitos B/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Linfocitos T/inmunología , Inmunidad Adaptativa , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Subgrupos de Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19 , Citocinas/sangre , Femenino , Humanos , Memoria Inmunológica , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Células Plasmáticas/inmunología , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Factores de Tiempo , Adulto Joven
15.
Curr Opin Immunol ; 66: 90-97, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32682290

RESUMEN

Flaviviruses are a group of important emerging and re-emerging human pathogens that cause worldwide epidemics with thousands of deaths annually. Flaviviruses are small, enveloped, positive-sense, single-stranded RNA viruses that are obligate intracellular pathogens, relying heavily on host cell machinery for productive replication. Proteomic approaches have become an increasingly powerful tool to investigate the mechanisms by which viruses interact with host proteins and manipulate cellular processes to promote infection. Here, we review recent advances in employing quantitative proteomics techniques to improve our understanding of the complex interplay between flaviviruses and host cells. We describe new findings on our understanding of how flaviviruses impact protein-protein interactions, protein-RNA interactions, protein abundance, and post-translational modifications to modulate viral infection.


Asunto(s)
Flavivirus/aislamiento & purificación , Proteínas/análisis , Proteómica , Animales , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Proteínas/metabolismo , Replicación Viral
16.
Nature ; 585(7825): 414-419, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32641828

RESUMEN

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Asunto(s)
Ubiquitinación , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Virus Zika/metabolismo , Virus Zika/patogenicidad , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Encéfalo/metabolismo , Línea Celular , Culicidae/citología , Culicidae/virología , Endosomas/metabolismo , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Masculino , Fusión de Membrana , Ratones , Especificidad de Órganos , Poliubiquitina/inmunología , Poliubiquitina/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Tropismo Viral , Viremia/inmunología , Viremia/prevención & control , Viremia/virología , Replicación Viral , Virus Zika/química , Virus Zika/genética , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virología
17.
Nat Microbiol ; 4(6): 985-995, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30833725

RESUMEN

West Nile virus (WNV) is an emerging mosquito-borne flavivirus, related to dengue virus and Zika virus. To gain insight into host pathways involved in WNV infection, we performed a systematic affinity-tag purification mass spectrometry (APMS) study to identify 259 WNV-interacting human proteins. RNA interference screening revealed 26 genes that both interact with WNV proteins and influence WNV infection. We found that WNV, dengue and Zika virus capsids interact with a conserved subset of proteins that impact infection. These include the exon-junction complex (EJC) recycling factor PYM1, which is antiviral against all three viruses. The EJC has roles in nonsense-mediated decay (NMD), and we found that both the EJC and NMD are antiviral and the EJC protein RBM8A directly binds WNV RNA. To counteract this, flavivirus infection inhibits NMD and the capsid-PYM1 interaction interferes with EJC protein function and localization. Depletion of PYM1 attenuates RBM8A binding to viral RNA, suggesting that WNV sequesters PYM1 to protect viral RNA from decay. Together, these data suggest a complex interplay between the virus and host in regulating NMD and the EJC.


Asunto(s)
Antivirales/farmacología , Infecciones por Flavivirus/tratamiento farmacológico , Proteínas Virales/genética , Virus del Nilo Occidental/efectos de los fármacos , Virus del Nilo Occidental/genética , Proteínas de la Cápside , Proteínas Portadoras , Codón sin Sentido , Virus del Dengue/genética , Exones , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Mapas de Interacción de Proteínas , Interferencia de ARN , ARN Viral , Proteínas de Unión al ARN , Proteínas Virales/fisiología , Virus del Nilo Occidental/patogenicidad , Virus Zika/genética
18.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550790

RESUMEN

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Asunto(s)
Virus del Dengue , Dengue , Proteínas de la Membrana , Proteínas Nucleares , Proteínas no Estructurales Virales , Infección por el Virus Zika , Virus Zika , Animales , Línea Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patología , Virus del Dengue/genética , Virus del Dengue/metabolismo , Virus del Dengue/patogenicidad , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/genética , Virus Zika/metabolismo , Virus Zika/patogenicidad , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/patología
19.
Nat Commun ; 9(1): 2985, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061688

RESUMEN

Many intrinsically disordered proteins self-assemble into liquid droplets that function as membraneless organelles. Because of their biological importance and ability to colocalize molecules at high concentrations, these protein compartments represent a compelling target for bio-inspired materials engineering. Here we manipulated the intrinsically disordered, arginine/glycine-rich RGG domain from the P granule protein LAF-1 to generate synthetic membraneless organelles with controllable phase separation and cargo recruitment. First, we demonstrate enzymatically triggered droplet assembly and disassembly, whereby miscibility and RGG domain valency are tuned by protease activity. Second, we control droplet composition by selectively recruiting cargo molecules via protein interaction motifs. We then demonstrate protease-triggered controlled release of cargo. Droplet assembly and cargo recruitment are robust, occurring in cytoplasmic extracts and in living mammalian cells. This versatile system, which generates dynamic membraneless organelles with programmable phase behavior and composition, has important applications for compartmentalizing collections of proteins in engineered cells and protocells.


Asunto(s)
Gránulos Citoplasmáticos/química , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/química , Secuencias de Aminoácidos , Animales , Caenorhabditis elegans , Línea Celular Tumoral , Clonación Molecular , Citoplasma/química , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Oxidación-Reducción , Permeabilidad , Dominios Proteicos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/química , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xenopus
20.
Nature ; 535(7610): 164-8, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27383988

RESUMEN

Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.


Asunto(s)
Sistemas CRISPR-Cas/genética , Flavivirus/fisiología , Genoma Humano/genética , Factores Celulares Derivados del Huésped/genética , Señales de Clasificación de Proteína/fisiología , Animales , Línea Celular , Drosophila/citología , Drosophila/genética , Drosophila/virología , Descubrimiento de Drogas , Retículo Endoplásmico/metabolismo , Femenino , Flavivirus/metabolismo , Infecciones por Flavivirus/genética , Infecciones por Flavivirus/virología , Glicosilación , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Membrana/genética , Terapia Molecular Dirigida , Transporte de Proteínas/genética , Proteolisis , Reproducibilidad de los Resultados , Serina Endopeptidasas/genética , Especificidad de la Especie , Proteínas Virales/química , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...